
HAL Id: hal-05114120
https://hal.science/hal-05114120v1

Submitted on 16 Jun 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AuRA: Remote Attestation over EDHOC for
Constrained Internet-of-Things Use Cases

Yuxuan Song, Geovane Fedrecheski, Mališa Vučinić, Thomas Watteyne

To cite this version:
Yuxuan Song, Geovane Fedrecheski, Mališa Vučinić, Thomas Watteyne. AuRA: Remote Attesta-
tion over EDHOC for Constrained Internet-of-Things Use Cases. ISCC 2025 - IEEE Symposium on
Computers and Communications, Jul 2025, Bologne, Italy. �hal-05114120�

https://hal.science/hal-05114120v1
https://hal.archives-ouvertes.fr


AuRA: Remote Attestation over EDHOC
for Constrained Internet-of-Things Use Cases

Yuxuan Song, Geovane Fedrecheski, Mališa Vučinić, Thomas Watteyne
Inria, France

first.last@inria.fr

Abstract—Remote Attestation (RA) is a security process that
verifies the integrity and trustworthiness of a remote device’s
software and hardware. While RA for high-end devices is
well-developed, RA in constrained IoT environments remains
incomplete. Existing embedded RA mechanisms focus on local
evidence generation and verification, but lack a complete process
that includes a secure attestation channel. This paper introduces
AuRA, a lightweight RA solution that builds upon the newly
standardized Ephemeral Diffie-Hellman over COSE (EDHOC)
protocol. AuRA specifies how to transport existing attestation
mechanisms in parallel with network authentication. We evaluate
AuRA on the nRF5340 microcontroller running at 64 MHz. This
implementation has a memory footprint of 6,665 B of RAM and
17,163 B of flash. The device completes Remote Attestation by
exchanging three EDHOC messages with a verifier entity, of sizes
42 B, 59 B and 223 B. This allows the device to prove that
it is running the right hardware and software in only 5.51 s,
consuming as little as 88 mC of charge.

I. INTRODUCTION

The rapid growth of the Internet of Things (IoT) has led to
a vast network of interconnected embedded devices, creating
new opportunities but also significantly increasing the risk
of cyberattacks. To mitigate risks, only legitimate devices
should be allowed to access a network. The traditional network
access policies are based on the identity of the device, through
a verification process known as “authentication”. However,
consider an IoT device with maliciously altered firmware.
Such a device still possesses valid authentication credentials,
such as a digital certificate and the corresponding private key,
but they are under the control of the attacker. This allows
the compromised device to authenticate with the network and
start sending bogus data. To prevent such threats and to ensure
that only devices with verified and trustworthy software and
hardware configurations are allowed to join the network, a
solution is to implement remote attestation.

Remote attestation [1] is a security service that verifies
the integrity and trustworthiness of the device. It enables
a device to generate evidence of its software and hardware
state, which it sends to a remote entity for verification. The
process typically relies on hardware isolation techniques such
as the Trusted Execution Environment (TEE), which prevent
the code residing in the non-secure world from accessing the
code residing in the secure world. An attestation service is
implemented within the secure world on a device. The code
residing in non-secure world can then invoke the attestation
service and request evidence of its state. The evidence is

typically a token signed by a private key that the non-secure
world cannot access.

There are many ways of generating evidence [2]–[4]. Con-
veying the evidence to a remote party for verification and
ensuring it is fresh is another challenge. Existing research
integrates remote attestation frameworks with Transport Layer
Security (TLS) for secure data transport in non-constrained
environments [5]. However, constrained environments face
greater challenges due to limited data rates (from kbps to
2 Mbps), restricted maximum transmission units (e.g. up to
256 B), and the necessity for low energy consumption. To
our knowledge, no studies to date have proposed transport
mechanisms for performing remote attestation in constrained
environments.

To address this challenge, this paper proposes AuRA, a
novel, complete, lightweight remote attestation process specif-
ically designed for constrained embedded systems. Its contri-
bution is three-fold:

1) A first hardware-agnostic attestation and authentication
transport framework for low-power constrained IoT de-
vices. We promote our approach for standardization
within the Internet Engineering Task Force (IETF).

2) A proof-of-concept implementation available under an
open-source 3-clause BSD license.

3) An evaluation of the framework on the nRF5340 ARM
Cortex-M33 microcontroller, measuring message sizes,
memory footprint, and energy consumption. We also
compare the token sizes with the state-of-the-art in the
non-constrained world. We demonstrate the feasibility
of AuRA in resource-limited environments.

The remainder of this paper is organized as follows: Sec-
tion II presents the preliminaries. Section III reviews the
related work. Section IV describes our proposal and is fol-
lowed by Section V which discusses the evaluation results.
Section VI concludes the paper.

II. BACKGROUND

A. Remote Attestation

Remote attestation is a security service that verifies and
confirms the integrity and trustworthiness of a remote device
or system. A standardized way of doing remote attestation
involves three entities [1].

• The Attester provides reliable evidence of its current state.



Fig. 1: RATS background-check model (left) and RATS pass-
port model (right) [1].

• The Verifier evaluates the evidence and produces attesta-
tion results.

• The Relying Party consumes the attestation results to take
application-specific actions.

IETF RATS (Remote ATtestation procedureS1) is a stan-
dardization working group that defines two attestation models:
the background-check model and the passport model (Fig. 1).
In the background-check model, the Attester sends evidence
to the Relying Party, which consults the Verifier for evaluation
and receives the attestation result. In the passport model, the
Attester sends evidence directly to the Verifier, receives the
attestation result, and then passes it to the Relying Party. A
trade-off involved is that when the Attester faces connection
constraints, the background-check model is preferred.

B. Hardware Requirements for Evidence Generation

Hardware-based attestation mechanisms typically rely on
the dedicated security co-processors and trusted execution
environments (TEEs).

The Trusted Platform Module (TPM) [6] is a widely used
coprocessor for attestation [7], [8]. TPM uses Platform Con-
figuration Registers (PCRs) that cannot be overwritten but can
only be extended through a cryptographic hash combining new
measurements with previous PCR values. During attestation,
the PCR values are signed with an attestation key to produce
verifiable evidence.

TEEs, such as ARM TrustZone [9] and Intel SGX [10],
partition the processor into secure and normal worlds, ensuring
hardware isolation and secure memory encryption. Several
studies focus on them [11], [12].

C. Ephemeral Diffie-Hellman over COSE (EDHOC) protocol

Ephemeral Diffie-Hellman over COSE (EDHOC) [13] is
a newly standardized protocol that enables two parties to
perform lightweight authenticated key exchange. EDHOC was
developed by the IETF Lightweight Authenticated Key Ex-
change (LAKE) working group2, with the goal of addressing
resource limitations of constrained IoT devices and networks.
The EDHOC protocol involves two parties: an Initiator and
a Responder. They obtain authenticated session keys after
completing the EDHOC handshake (Fig. 2).

In EDHOC message_1, the Initiator sends a supported
authentication method using either a signature or static Diffie-
Hellman key (representing authentication by a signature or

1 https://datatracker.ietf.org/wg/rats/
2 https://datatracker.ietf.org/wg/lake/

Fig. 2: The Ephemeral Diffie-Hellman over COSE (EDHOC)
protocol [13].

a Message Authentication Code – MAC – respectively). The
message also includes a selected cipher suite, an ephemeral
public key (G_X), a connection identifier (C_I), and an
optional External Authorization Data (EAD), EAD_1. EDHOC
supports the integration of external security applications by
transporting EAD through its designated field in the protocol.

In EDHOC message_2, the Responder replies with its
ephemeral public key (G_Y), and an encrypted plaintext that
contains its connection identifier (C_R), a credential identifier,
an authentication item (either a signature or a MAC) and an
optional EAD_2. The exchanged connection identifiers (C_I
and C_R) serve as references to correlate the messages in an
EDHOC session. EDHOC also allows the full authentication
credentials to be omitted within the protocol messages. In-
stead, the Responder and the Initiator may send credential
identifiers (ID_CRED_R and ID_CRED_I) to enable the
retrieval of authentication credentials and keys.

EDHOC message_3 is a ciphertext containing the Ini-
tiator’s credential identifier, an authentication item (signa-
ture or MAC), and an optional EAD_3. After creating
message_3, the Initiator derives the shared secret. Upon
receiving message_3, the Responder also derives the shared
secret, completing the authentication handshake. This shared
secret is then used to secure subsequent application messages.

III. RELATED WORK

Remote attestation for low-power IoT devices focuses on
minimizing hardware dependencies and creating lightweight,
compatible mechanisms for constrained environments.

Some lightweight remote attestation mechanisms focus on
monitoring or capturing the memory state to generate ev-
idence. RealSWATT [2] is a software-based attestation ap-
proach that periodically scans memory to generate evidence,
enabling continuous attestation to promptly detect any com-
promise or malicious activity. LAPE [3] provides lightweight
control-flow attestation for resource-constrained IoT devices.
It generates evidence by monitoring function calls within the
firmware, which the Verifier compares against a pre-stored
control-flow graph to detect any unauthorized deviations.

Some attestation mechanisms involve additional hardware-
feature designs. SIMPLE [14] designs a software-based mem-
ory isolation technique called the Security MicroVisor (SµV).



Fig. 3: AuRA enables a constrained IoT device to securely
prove to a verifier that it is running the right hardware and
software.

It isolates the memory for the Trusted Computing Module
(TCM) from untrusted software, ensuring that no unauthorized
code can access the protected regions. CHARM [4] integrates
Hardware Performance Counters (HPCs)-based monitoring
to generate vectors representing the device state, which are
analyzed by a machine learning classifier on the verifier
side to detect malicious behavior. Another alternative is the
use of Physical Unclonable Functions (PUFs), which can
be defined as functions embedded into the hardware. PUF
provides unique, unclonable responses to specific challenges,
making it ideal for generating tamper-resistant identifiers and
have been explored in various studies [15] as part of attestation
mechanisms. In AuRA, we adopt the mechanism that examines
memory and hashes the firmware image to generate evidence
representing the device state.

For remote attestation incorporated with secure transport
mechanisms, Ott et al. [5] integrated remote attestation into
the TLS handshake via a post-handshake process, allowing
devices to verify their integrity after establishing a secure
communication channel. While this approach completes the
attestation process with TPM, it only supports evidence gen-
eration for microcontrollers without an attestation channel.
Feng et al. [16] introduced a combined attestation and au-
thentication mechanism that verifies both software integrity
and device identity. However, this method relies on PUFs,
which are uncommon in many constrained devices and pose
implementation challenges.

To our knowledge, no existing research integrates the attes-
tation mechanisms with an authentication channel specifically
designed for hardware-agnostic, resource-limited devices.

IV. AURA: LIGHTWEIGHT REMOTE ATTESTATION OVER
EDHOC

We propose AuRA, which runs Authentication in parallel
with Remote Attestation, using the External Authorization
Data (EAD) fields of the EDHOC protocol. The detailed
message flow is shown in Fig. 3.

A. Attestation Protocol
The constrained IoT device acts as the Attester. The network

service acts as the Relying Party; it is responsible for granting

network access based on the attestation result. A trusted web
server acts as the Verifier, which evaluates the evidence from
the Attester. The EDHOC session is established between the
Attester and the Relying Party.

To ensure evidence freshness and prevent replay attacks, a
unique Nonce is generated by the Verifier and returned with
the evidence to validate the session’s integrity.

During the EDHOC handshake, three EAD fields (EAD_1,
EAD_2, and EAD_3) are exchanged for remote attestation.
EAD_1 (Attestation Proposal) lists the evidence types sup-
ported by the Attester. The evidence type specifies the en-
coding method and the content format of the evidence and is
identified by an integer registered under the Internet Assigned
Numbers Authority (IANA). The Relying Party forwards the
Attestation Proposal to the Verifier along with the EDHOC
session connection identifier (C_R). The Verifier binds the
received C_R with a randomly generated Nonce to uniquely
identify the attestation session, enabling simultaneous attes-
tations from multiple devices. The Verifier then selects a
compatible evidence type, and responds with the selected
type and Nonce. Based on these inputs, the Relying Party
generates EAD_2 (Attestation Request), and sends it to the
Attester, specifying the chosen evidence type and Nonce. Upon
receiving the request, the Attester generates the evidence and
returns it in EAD_3 (Evidence).

The privacy considerations for remote attestation align with
those of EDHOC’s EAD fields. EAD_1 does not provide
resistance to active or passive attackers due to the absence of
authentication. EAD_2 provides confidentiality via encryption
but remains vulnerable to active attackers. EAD_3 offers ro-
bust protection against both, securing the attestation evidence
exchanged between Initiator and Responder.

B. Evidence Generation

The Evidence is formatted as a signed attestation token
structured as COSE_Sign1, a cryptographically signed piece
of data that ensures the integrity of the device. The Attester
signs the payload of the attestation token with its private
key, using the signature algorithm specified in the header of
COSE_Sign1. The Verifier uses the corresponding public key
to validate the signature, which is prepared in a provisioning
step before the attestation process. In AuRA, this attestation
token follows the IETF “Entity Attestation Token” [17]. The
details of the evidence generation process are provided in
Section V-B. The attestation evidence includes information on
the device’s software and hardware state, particularly the active
firmware image of the microcontroller.

Our proposal AuRA addresses the gaps in existing remote
attestation solutions by integrating a lightweight hardware-
agnostic attestation framework into EDHOC, specifically for
constrained networks. The Evidence is securely transmitted
in EDHOC’s third message, encrypted using AEAD (Authen-
ticated Encryption with Associated Data), ensuring evidence
protection within an authenticated channel.



C. Standardization

The AuRA proposal outlined in this section is promoted for
standardization within the IETF [18].

V. EVALUATION

A. Setup

To evaluate AuRA, we use the DotBot3, an open-source
micro-robot supporting wireless communication and indoor
localization. The DotBot is a robotic platform designed for
research and education, based on the Cortex-M33 nRF5340
microcontroller operating at 64 MHz.

The DotBot communicates wirelessly with a gateway over
Bluetooth Low Energy (BLE) at 2.4 GHz. The gateway,
built on the nRF52840 platform, acts as an intermediary by
receiving the data from the DotBot and forwarding it to the
computer via a USB connection, using the UART protocol.
The computer executes the DotBot software written in Python,
which we refer to as the “controller”. The controller handles
all processing tasks and high-level operations, including swarm
coordinating commands via a web server. The evaluation setup
is shown in Fig. 4.

We map the remote attestation entities that we present in
Section IV in the background-check model to the DotBot
infrastructure. The DotBot acts as the Attester, and the DotBot
controller software implements the Relying Party (RP). A
web server acts as the Verifier. The Verifier implements a
policy that accepts different firmware versions along with their
corresponding hashes. We implement the background-check
model, illustrated in Fig. 4.

B. Evidence Format Size Comparison

In AuRA, we define the evidence format as a token,
specifically following the structure of the Entity Attestation
Token (EAT), as standardized by the IETF RATS [17].

EAT supports various profiles that specify implementation
choices across different aspects of the token, offering flexibil-
ity for diverse application needs. Two widely adopted options
for generating evidence as an attestation token are:

1) The Arm’s Platform Security Architecture (PSA) At-
testation Token [19], a specific profile of the Entity
Attestation Token (EAT).

2) An EAT with the “measurements” claim formatted using
Concise Software Identification Tags (CoSWID [20]).

We compare the token formats by listing their required
attributes and minimum byte sizes.

CoSWID does not specify a fixed size range for text-
type attributes. Since CoSWID serves as the format for mea-
surements claims in EAT, and the “ueid” in EAT specifies
a minimum size of 10 bytes for text, we apply the same
minimum size of 10 bytes for text attributes within CoSWID.
As shown in Tables I and II, the minimal byte requirement
for PSA Attestation Token is 195 B, whereas EAT with
CoSWID-formatted measurements claims requires 90 B. These

3 https://github.com/DotBots/DotBot-firmware

Attribute Size (Bytes)
psa-nonce 32
psa-instance-id 33
psa-profile 33
psa-implementation-id 32
psa-client-id 1

psa-software-components measurement-value 32
signer-id 32

Total 195

TABLE I: Entity Attestation Token profiled in Arm’s Platform
Security Architecture (PSA) Attestation Token.

Attribute Size (Bytes)
eat-nonce 8
ueid 7

measurements

tag-id 10
tag-version 1
software-name 10

entity entity-name 10
role 1

evidence
fs-name 10

hash hash-alg-id 1
hash-value 32

Total 90

TABLE II: Entity Attestation Token with the “measurements”
claim formatted in Concise Software Identification Tags.

numbers are not extracted from a real implementation, rather
a theoretical comparison with the minimum size requirements.

We conclude that PSA is more suitable for high-end devices,
as it includes a greater number of attributes to detail the
various hardware and software component IDs. Additionally,
the PSA Attestation Token requires a TrustZone-enabled pro-
cessor with a CPU capable of secure and non-secure modes,
which necessitates additional configuration not standard in
all embedded devices. In contrast, CoSWID in EAT is more
appropriate for low-end devices, where fewer unique IDs and
minimal overhead are needed, and where generation imposes
no specific hardware requirements. For constrained IoT use
cases, we opt for EAT with CoSWID-formatted measurements
claims due to its lightweight structure and compatibility with
all low-resource environments.

C. Memory Footprint

We evaluate the static memory footprint of our proposal and
compare it to the case of the EDHOC protocol without remote
attestation.

In our evaluation, we use the lakers library4 in Rust,
integrated as a static library within the DotBot project. We
configure lakers with its authentication method 3, which uses
static Diffie-Hellman keys for both parties, and cipher suite
2, relying on Elliptic-Curve Diffie-Hellman (ECDH) on the
P-256 curve, the SHA-256 hashing algorithm, and the AES-
128-CCM authenticated encryption scheme. We developed a
C library5 specifically integrated with the DotBot framework
for the attestation component, including the preparation and
processing of the attestation items.

4https://github.com/openwsn-berkeley/lakers/
5 https://github.com/ysong02/DotBot-firmware/tree/main/drv/attestation



Fig. 4: Setup for evaluating AuRA in the “background-check” model.

TABLE III: AuRA memory footprint.

Flash RAM
AuRA 1,927 B 1,480 B
EDHOC 15,236 B 5,185 B
Total 17,163 B 6,665 B

TABLE IV: AuRA message sizes.

message 1 message 2 message 3
AuRA 4 B 13 B 202 B
EDHOC 38 B 46 B 21 B
Total 42 B 59 B 223 B

Table III shows that our baseline, the EDHOC protocol,
consumes 15,236 B of flash memory. When integrated with
the attestation process, flash memory consumption rises to
17,163 B, which is an increase of 1,927 B (12.6%). In terms
of RAM, EDHOC alone requires 5,185 B. With attestation,
the RAM consumption increases to 6,665 B, an increase of
1,480 B (28.5%) for the attestation-related operations.

The DotBot features the nRF5340, which has 1 MB of flash
memory and 512 kB of RAM. The total flash memory usage
for EDHOC with remote attestation is 1.64% of available flash,
with attestation operations contributing 0.18%. The RAM
usage of remote attestation over EDHOC represents 1.27%
of the total RAM, attestation accounting for 0.28%. We can
conclude that the memory usage of both flash and RAM can
be considered acceptable given the memory capacity of the
nRF5340 microcontroller.

D. Message Sizes

We evaluate the communication overhead of remote attesta-
tion over EDHOC by measuring the message sizes for each of
the three EDHOC messages, along with the additional payload
introduced by the attestation items (EAD items). The results
were obtained directly from the log files generated by the
controller (Relying Party). These logs captured the precise
communication overhead. The results are shown in Table IV.

The first message that initiates the EDHOC protocol has
a size of 38 B. The EAD_1 adds 4 B for evidence type
information, totaling 42 B. The second message, including an
ephemeral key, an encrypted credential identifier and MAC, is
46 B. EAD_2 adds 13 B (nonce and an integer), resulting
in a total of 59 B. The third EDHOC message is 21 B.
EAD_3 adds 202 B of attestation evidence, bringing the total
to 223 B. These sizes are acceptable for our BLE physical
layer, which supports a maximum transmission unit of 255 B6.

6 https://docs.nordicsemi.com/bundle/ps nrf5340/

For other physical layers, such as LoRA with a maximum
payload size of 255 B depending on the Spreading Factor,
Coding Rate and other configurations, or IEEE 802.15.4 with
a maximum payload size of 127 B, message 3 would need to
be fragmented.

E. Energy Consumption

In this section, we evaluate the energy consumption and
time required for performing remote attestation over EDHOC.

For our measurements, we used a power profiler and a logic
analyzer. We use the Otii Arc power profiler to supply power
and measure energy consumption during protocol execution,
monitoring current over time. The Otii Arc can read signals
from a digital pin, allowing us to track timing throughout the
handshake. The Saleae Logic Analyzer with a sample rate of
500 MS/s and a maximum frequency of 100 MHz, is used
for precise timing measurements of the EDHOC handshake,
including attestation operations on the DotBot.

We collect the energy data using the Otii Arc software along
with another file for the General-Purpose Input/Output (GPIO)
signal. To synchronize timing and energy measurements, both
the Otii Arc and Saleae Logic Analyzer are connected to the
same GPIO pin on the DotBot. Results are shown in Fig. 5.

Fig. 5 shows that completing the EDHOC handshake, in-
cluding both authentication and attestation, takes 5.51 s and
consumes 88 mC of charge, with an average current of 16 mA.
Attestation accounts for 63% of the charge due to the signing
and hashing operations for evidence generation.

TABLE V: Timing breakdown of attestation stages in Fig. 5.

Stage Name Duration (s)
initiator new 0.36
prepare ead 1 2.00e-6
prepare message 1 1.33e-3
radio tx rx 0.02
parse message 2+fetch creds 0.51
verify message 2 1.03
process ead 2 7.00e-6
encoding 1.90e-5
hash and encoding image 1.53
signature then encoding 2.05
prepare message 3 0.01
tx message 3 2.3e-3

Based on Table V, the most time-consuming operation is
the signature signing and encoding, which takes 2 s due to
the use of Ed25519, involving both hashing and signing. This
signature generation is performed only once per attestation
token, reducing its impact on overall feasibility.



Fig. 5: Current consumption benchmark during attestation.

The second most time-consuming operation is hashing and
encoding the firmware image, which takes 1.5 s. The input for
the hashing process is the entire firmware image, which has
a size of 520 kB. All other processes are completed in under
1 s, with specific durations as follows: verifying message 2
takes 1 s, parsing message 2 and fetching credentials takes
0.51 s, and initiating a new process for the initiator takes
0.36 s. Preparing EAD_1 and processing EAD_2 are notably
time-efficient, taking only 2 µs and 7 µs, respectively.

Since we are using a software-based cryptographic backend,
the results reflect a worst-case situation, where platforms with
hardware accelerators could perform up to twice faster in the
cryptographic operations. We can conclude, as expected, that
the processing is dominated by the cryptographic operations.

VI. CONCLUSIONS

This paper introduces AuRA, the first complete, hardware-
agnostic remote attestation framework integrated with the
EDHOC authenticated channel, which is specifically designed
for constrained IoT environments. Our approach is standards-
based that aligns with the IETF RATS architecture and lever-
ages the EDHOC protocol by IETF LAKE, ensuring compati-
bility with future IoT security frameworks. We demonstrate its
lightweight nature, efficiency and feasibility of this approach
through an evaluation on a low-power micro-robot using the
nRF5340.

We are currently implementing a mutual attestation over
the EDHOC protocol. Furthermore, we aim to integrate the
remote attestation over EDHOC with swarm-based collective
attestation mechanisms.

ACKNOWLEDGEMENTS

This document is issued within the frame and for the
purpose of the OpenSwarm project. This project has received
funding from the European Union’s Horizon Europe Frame-
work Programme under Grant Agreement No. 101093046.
Views and opinions expressed are however those of the au-
thor(s) only and the European Commission is not responsible
for any use that may be made of the information it contains.

REFERENCES

[1] H. Birkholz, D. Thaler, M. Richardson, N. Smith, and W. Pan, Remote
ATtestation procedureS (RATS) Architecture, Internet Engineering Task
Force (IETF) Std. RFC9334, 2023.

[2] S. Surminski, C. Niesler, F. Brasser, L. Davi, and A.-R. Sadeghi,
“Realswatt: Remote software-based attestation for embedded devices
under realtime constraints,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021.

[3] D. Huo, Y. Wang, C. Liu, M. Li, Y. Wang, and Z. Xu, “Lape: A
lightweight attestation of program execution scheme for bare-metal
systems,” in 2020 IEEE 22nd International Conference on High Per-
formance Computing and Communications; IEEE 18th International
Conference on Smart City; IEEE 6th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), 2020.

[4] D. Li Calsi and V. Zaccaria, “Interruptible remote attestation of low-
end iot microcontrollers via performance counters,” ACM Trans. Embed.
Comput. Syst., Sep. 2023.

[5] S. Ott, M. Kamhuber, J. Pecholt, and S. Wessel, “Universal remote
attestation for cloud and edge platforms,” in Proceedings of the 18th
International Conference on Availability, Reliability and Security, 2023.

[6] Trusted Computing Group. (2024) Trusted platform module (tpm).
[Online]. Available: https://trustedcomputinggroup.org/work-groups/
trusted-platform-module/

[7] A. Dave, M. Wiseman, and D. Safford, “Sedat: Security enhanced device
attestation with tpm2. 0,” arXiv preprint arXiv:2101.06362, 2021.

[8] P. G. Wagner, P. Birnstill, and J. Beyerer, “Dds security+: Enhancing
the data distribution service with tpm-based remote attestation,” in Pro-
ceedings of the 19th International Conference on Availability, Reliability
and Security, 2024.

[9] Arm Limited. (2024) Arm trustzone technology. [Online]. Available:
https://developer.arm.com/documentation/PRD29-GENC-009492/latest/

[10] V. Costan, “Intel sgx explained,” IACR Cryptol, EPrint Arch, 2016.
[11] Z. Zhang, “Enhancing iot security through trusted execution environ-

ments,” in 2024 2nd International Conference on Image, Algorithms
and Artificial Intelligence (ICIAAI 2024), 2024.

[12] R. Nagy, M. Bak, D. Papp, and L. Buttyán, “T-raid: Tee-based remote
attestation for iot devices,” in International ISCIS Security Workshop,
2021.

[13] G. Selander, J. Preuß Mattsson, and F. Palombini, Ephemeral Diffie-
Hellman Over COSE (EDHOC), Internet Engineering Task Force (IETF)
Std. RFC9528, 2024.

[14] M. Ammar, B. Crispo, and G. Tsudik, “Simple: A remote attestation
approach for resource-constrained iot devices,” in 2020 ACM/IEEE 11th
International Conference on Cyber-Physical Systems (ICCPS), 2020.

[15] A. Al-Meer and S. Al-Kuwari, “Physical unclonable functions (puf) for
iot devices,” ACM Computing Surveys, 2023.

[16] W. Feng, Y. Qin, S. Zhao, and D. Feng, “Aaot: Lightweight attestation
and authentication of low-resource things in iot and cps,” Computer
Networks, 2018.

[17] L. Lundblade, G. Mandyam, J. O’Donoghue, and C. Wallace, The Entity
Attestation Token (EAT), Internet Engineering Task Force (IETF) Std.
draft-ietf-rats-eat-31, 2024.

[18] Y. Song, Remote attestation over EDHOC, Internet Engineering Task
Force (IETF) Std. draft-song-lake-ra-02, 2024.

[19] H. Tschofenig, S. Frost, M. Brossard, A. L.Shaw, and T. Fossati,
Arm’s Platform Security Architecture (PSA) Attestation Token, Internet
Engineering Task Force (IETF) Std. draft-tschofenig-rats-psa-token-23,
2024.

[20] H. Birkholz, J. Fitzgerald-Mckay, C. Schmidt, and D. Waltermire,
Concise Software Identification Tags, Internet Engineering Task Force
(IETF) Std. RFC9393, 2023.


